New EMUGE Cut & Form solid carbide finishing end mills feature a patented tool geometry that performs two functions – cutting and polishing in one operation, generating significant manufacturing time and cost savings!

Advantages:
- Enables the production of polished surfaces in a single milling operation with surface grades of N1-N3
- No rework of workpiece required
- Significant reduction of manufacturing costs

Applications:
- High performance tool for finishing operations only
- Trimming visible 2D contoured surfaces in non-ferrous materials; wrought aluminum alloys, copper and copper alloys
- Production of design surfaces in medical technology, jewelry industry, food and electronics sector

Types of tools:
- Cutting diameter 6-12 mm
- Stub and standard lengths

DIN 6527 – Stub length

<table>
<thead>
<tr>
<th>ø d₁</th>
<th>l₂</th>
<th>l₃</th>
<th>l₁</th>
<th>ø d₂</th>
<th>ø d₃</th>
<th>Chamfer</th>
<th>Flutes</th>
<th>Tool No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>10</td>
<td>16</td>
<td>54</td>
<td>5.8</td>
<td>6</td>
<td>0.12</td>
<td>3</td>
<td>2506.006</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>20</td>
<td>58</td>
<td>7.7</td>
<td>8</td>
<td>0.12</td>
<td>3</td>
<td>2506.008</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>24</td>
<td>66</td>
<td>9.5</td>
<td>10</td>
<td>0.20</td>
<td>3</td>
<td>2506.010</td>
</tr>
<tr>
<td>12</td>
<td>16</td>
<td>26</td>
<td>73</td>
<td>11.5</td>
<td>12</td>
<td>0.20</td>
<td>3</td>
<td>2507.012</td>
</tr>
</tbody>
</table>

DIN 6527 – Standard length

<table>
<thead>
<tr>
<th>ø d₁</th>
<th>l₂</th>
<th>l₃</th>
<th>l₁</th>
<th>ø d₂</th>
<th>ø d₃</th>
<th>Chamfer</th>
<th>Flutes</th>
<th>Tool No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>13</td>
<td>20</td>
<td>57</td>
<td>5.8</td>
<td>6</td>
<td>0.12</td>
<td>3</td>
<td>2507.006</td>
</tr>
<tr>
<td>8</td>
<td>19</td>
<td>25</td>
<td>63</td>
<td>7.7</td>
<td>8</td>
<td>0.12</td>
<td>3</td>
<td>2507.008</td>
</tr>
<tr>
<td>10</td>
<td>22</td>
<td>30</td>
<td>72</td>
<td>9.5</td>
<td>10</td>
<td>0.20</td>
<td>3</td>
<td>2507.010</td>
</tr>
<tr>
<td>12</td>
<td>26</td>
<td>35</td>
<td>83</td>
<td>11.5</td>
<td>12</td>
<td>0.20</td>
<td>3</td>
<td>2507.012</td>
</tr>
</tbody>
</table>

For the purpose of calculating the feed rate, multiply by 3 flutes.

Unique, patented tool geometry:

For the purpose of calculating the feed rate, multiply by 3 flutes.
Application Example

Material: 6061

Tool: 2507.010

Surface roughness: $R_a = 0.08 \, \mu m / R_z = 0.46 \, \mu m$

Surface roughness grade: N2

Coolant: Emulsion

Cutting speed v_c: 1000 sfm

Speed n: 10000 rpm

Feed per tooth f_z: .001"

Feed speed v_f: 28 ipm

Axial depth of cut a_x: .750"

Radial depth of cut a_r: .004"

The cutting data must be adapted to the material to be machined, taking into consideration the clamping of tool and workpiece as well as the natural vibration frequency of the component and spindle. For the purpose of calculating the feed rate, multiply by 3 flutes. Contact Emuge for more information.